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In this article, a class of FitzHugh-Nagumo model is studied. First, all nec-
essary conditions for the parameters of system are found in order to have 
one stable fixed point which presents the resting state for this famous 
model. After that, using the Hopf’s theorem proofs analytically the exist-
ence of a Hopf bifurcation, that is a critical point where a system’s stability 
switches and a periodic solution arises. More precisely, it is a local bifur-
cation in which a fixed point of a dynamical system loses stability, as a pair 
of complex conjugate eigenvalues cross the complex plane imaginary axis. 
Moreover, with the suitable assumptions for the dynamical system, a small-
amplitude limit cycle branches from the fixed point. 
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1  INTRODUCTION 

In the beginning of 1960s, FitzHugh and Nagumo 
studied a model called FitzHugh-Nagumo model, to 
expose part of the inner working mechanism of the 
Hodgkin-Huxley equations, a famous model in 
study of neurophysiology since 1952. The 
FitzHugh-Nagumo model was introduced as a 
dimensional reduction of the well-known Hodgkin-
Huxley model (Hodgkin and Huxley, 1952; 
Nagumo et al., 1962; Izhikevich, 2005; Ermentrout 
and Terman, 2009; Keener and Sney, 2009; Murray, 
2010). It is constituted by two equations in two 
variables u  and v . The first one is the fast variable 
called excitatory representing the transmembrane 
voltage. The second variable is the slow recovery 
variable describing the time dependence of several 
physical quantities, such as the electrical 
conductance of the ion currents across the 
membrane. The FitzHugh-Nagumo equations 
(FHN), using the notation in (Izhikevich and 
FitzHugh, 2006; Ambrosio, 2009; Ambrosio and 
Aziz-Alaoui, 2012; Ambrosio, 2012; Ambrosio and 
Aziz-Alaoui, 2013), are given by 

3
( , ) ,

3

1
( , ) ( ),

du u
u f u v u v I

dt

dv
v g u v u a bv

dt 


      




    




     (1)    

 where u  corresponds to the membrane potential, 
v  corresponds to the slow flux ions through the 
membrane, I  corresponds to the applied extern 
current, and , , ( 0)a b     are parameters. Here, 

, , ,I a b   are real numbers. 

The paper is organized as follows. In section 2, a 
study of fixed point is investigated and all necessary 
conditions for the parameters of FitzHugh-Nagumo 
model are found in order to have a stable focus. In 
section 3, the system undergoes supercritical Hopf 
bifurcation is shown. And finally, conclusions are 
drawn in Section 4. 

2 A STUDY OF FIXED POINTS  

Equilibria or stability are tools to study the dynamic 
of fixed points. In mathematics, a fixed point of a 
function is an element of the function's domain that 
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is mapped to itself by the function. This paper 
focuses on the fixed points of the system (1) given 
by the resolution of the following system 

3
0( , ) 0 3

( , ) 0

u
u v If u v

g u v u a
v

b


         

 

It implies that 

3( 1) 33 3 0,
b a

u u I
b b


          (2)  

where 0b   (see 0b   in remark 2). 

Let 3( 1)b
p

b


  and 3

3
a

q I
b

  . The equation (2) can 

be written 3
0.u pu q    

Let now 
3 24 27 .p q   

If 0 , then the equation (2) admits only one root 
and hence the system (1) admits a unique fixed 
point. Now, if 0 , then the system (1) admits two 
fixed points, and finally if 0 , the system (1) 
admits three fixed points (see Figure 1). This figure 
shows the numerical simulations obtained for two 
nullclines of the system (1) with 0.7, 13a    and 

0, 0I u 


 in red and 0v 


 in green. Figure 1(a) 
represents a unique fixed point of the system (1) for 

0.8b ; Figure 1(b) represents two fixed points for 
2.3791b ; and Figure 1(c) shows three fixed points 

for 3.5b . 

 

Fig. 1: Numerical simulations obtained for two nullclines of the system (1) 

The Jacobian matrix of the system (1) is written as 
the following: 

( , ) ( , ) 21 1
( ) .1( , ) ( , )

f u v f u v
u

u vA u bg u v g u v

u v  

                      

 

Let ( *, *)u v  be one fixed point of (1), we have 

( ( *)Det A u  2I ) 2 ( ( *)) ( ( *)),Tr A u Det A u     

 Where 2( ( )) 1
b

Tr A u u


   and 

1 12 2( ( )) (1 ) .
b b b

Det A u u u
   


      

Note that, if b  , then ( ( ))Tr A u  admits two real 
roots given by 

11
b

uTr 
  and 1 .2

b
uTr 

   

The discriminant of ( ( ))Det A u  is 
2

4 (1 )b b




 . Thus, 

if (1 ) 0 0b b b     or 1b , then ( ( ))Det A u  admits 
two real roots given by 

1
11uDet b

   and  1
1 .2uDet b

   

Here, the paper focuses on the case where the 
system has a unique fixed point. Moreover, note that 
if (0,1)b , then 0p , and hence  0 . Thus, the 

value of  b  in (0,1)  is chosen. 

Remark 1. When 1b , then 0  if a I . This 
implies that the system (1) admits two fixed points. 
This case is not considered.  

The type of fixed points can be resumed thank to the 
following tables. 

In the case where b   and 0 1b  . 
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Table 1:  Stability of fixed point 

u    1
b


   1

b


    

( ( ))Tr A u    0 + 0   
( ( ))Det A u  + + + 

Type of 
equilibrium 

Stable focus 
Stable node 

Unstable focus 
Unstable node 

Stable focus 
Stable node 

Remark 2. When 0b , a fixed point 
3

( , )
3

a
E a a I      is obtained. The type of fixed 

points in this case is studied as the following table 
for 0b  . In other words, the point E  is stable if 

1a  , it is unstable if 1a  , and it become a center 

if  1a  . 

In the case where  b   and 0 1b  . 

Table 2: Stability of fixed point 

u                           
( ( ))Tr A u                                   

( ( ))Det A u                 +                         

Type of equilibrium 
Stable focus 
Stable node 

Look at Table 2, it is easy to see that the fixed point 
is always stable. It is not real for a neuron model. 
Remind that this work focuses on the context of 
slow - fast dynamics, so 0  (in particular, b 
). With 0 1b   and 0 , a sufficient condition over 
the parameter a  is found such that the stationary 
point is stable and stay at the left infinite branch of 
the cubic. Following Table 1, it is sufficient to have 
the stationary point  ( *, *)u v  with  * 1u   (since 

1 1
b


   , this condition makes the fixed point 

stay at the left infinite branch of the cubic). 
Moreover, from the equation (2), we have 

3 .
3

b
a bu u u Ib     

By deriving the expression of  a  with respect to u
, the above equation becomes 

2' 1 0, (0,1).a b bu b       

This implies the following table: 

Table 3: Variation of the parameter a  

u                           1                          
'a     
 
 

a  

   

Table 3 shows that a sufficient condition is 
2

1
3

b Ib a   . To ensure the excitability character, 

2 * 1u   is chosen. This implies that 

2 2
1 2 .

3 3
b Ib a b Ib       

In particular, if 0I , it is easy to see that 

2 2
1 2.

3 3
b a b     

This condition permits to have a fixed point that is 
not so far from the local minimum of u -nullcline. 
Since, if the value of a  is big enough, for example, 

2
2

3
a b  , the fixed point will be far from the local 

minimum of  u -nullcline. Therefore, the refractory 
period of the action potential will disappear (see 
Figure 2). The Figure 2(a) represents two nullclines 
of the system (1) with 3.5, 0.8, 13a b     and 

0, 0I u 


 in red and 0v


 in green. The intersection 
point of two nullclines is the fixed point.  The blue 
curve is obtained by drawing the asymptotic 
dynamic of one solution of the system starting from 
one initial condition. The Figure 2(b) shows the time 
series corresponding to ( , )t u

2
1

3
b Ib   
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Fig. 2: Numerical results obtained for the system (1) with 3.5, 0.8, 13a b    , 0I  

Finally, the FitzHugh-Nagumo model of two equa-
tions is given by the following form: 

3
( , )

3

1
( , ) ( )

du u
u f u v u v I

dt

dv
v g u v u a bv

dt 


      




    




     (3) 

with 

2 2
0 1, ,1 2 ,

3 3
b b b Ib a b Ib         

where u  corresponds to the membrane potential, v  
corresponds to the slow flux ions through the mem-
brane and  I  corresponds to the applied extern cur-
rent. 

In (3), we fix  0.7, 0.8, 13, 0a b I    , see (Izhikevich 
E. M., 2006) and Figure 3. We obtain 

3

3
1

( 0.7 0.8 )
13

du u
u v

dt
dv

u v
dt


   

   

       (4) 

The system (4) has one fixed point  
( 1.1994, 062426)B   . In Figure 3(a), we simulated 

two nullclines, 0u


 in red and 0v


 in green. The 
intersection point of these two nullclines is a fixed 
point ,B  and one orbit of (4) is represented in blue. 
At the point B , we get ( ) 0.1039Det A   and 

( ) 0.5001Tr A  , hence 2( ) 4 ( ) 0Tr A Det A  . Thus, B  
is a stable focus. The Figure 3(b) shows the time se-
ries corresponding to ( , )t u . 

 

Fig. 3: Numerical results obtained for the system (4) 

 In particular, this system has the excitability prop-
erty, thank to the following phenomenon: the initial 
condition ( (0), (0))u v  is chosen on the left infinite 
branch of the cubic. Then, 

if ( (0), (0))u v  is such that the trajectory stays near 
enough from the local minimum  

value of the cubic (see blue curve in Figure 4(a)), or 
it will not go to below of this value (see violet curve 
in Figure 4(a)), then the solution reaches closer to 

the stationary point quickly. More precisely, ini-

tially it is easy to see, 0, 0u v 
 

, and under the effect 
of the fast dynamic, the trajectory reaches closer to 
the left infinite branch. The solution tends to the sta-
tionary point under the effect of the slow dynamic 
and Figure 4(b) represents the time series corre-
sponding to ( , )t u ; 

if ( (0), (0))u v  is chosen such that the trajectory goes 
to below and far enough from  
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the local minimum, then in this case the trajectory is 
not blocked any more by the left infinite branch and 
reaches to the right infinite branch under the effect 
of the fast dynamic. It takes up then this branch 

(since 0v


), under the effect of the slow dynamic, 
until  v  exceeds the local maximum, it then quickly 
joins the left branch, before finally reach slowly to-
wards the equilibrium state. This system is thus said 

excitable, since when the solution is close to its 
equilibrium state, a disturbance can cause it to 
change greatly values before returning to its equilib-
rium state (see Figure 4(c)). This system thus pro-
vides a simple model of excitability that is observed 
in diverse cell (neurons, cardiomyocites, etc.). Fig-
ure 4(d) represents the time series corresponding to 
( , )t u . 

 
Fig. 4: Numerical solutions of the system (4) 

3 EXISTENCE AND DIRECTION OF HOPF 
BIFURCATION  

This section focuses on the existence and the direc-
tion of Hopf bifurcation, which corresponds to the 
passage of a fixed point to a limit cycle under the 
effect of variation of a parameter. Recall the Hopf's 
theorem (Dang-Vu Huyen, and Delcarte C., 2000; 
Corson N., 2009). 

Theorem 1. Consider the system of two ordinary 
differential equations 

( , , )

( , , )

u f u v a

v g u v a











         (5) 

Let ( *, *)u v  a fixed point of the system (5) for all a
. If the Jacobian matrix of the system (5) at ( *, *)u v  
admits two conjugate complex eigenvalues, 

( ) ( ) ( )1,2 a a iw a    and there is a certain value  

a ac  such that ( ) 0, ( ) 0a w ac c   and ( )
( ) 0.

a
aca





 

Then, a Hopf bifurcation survive when the value of 

bifurcation parameter a  passes by ca  and 

( *, *, )u v ac  is a point of Hopf bifurcation. Moreover, 

let 1c  in order that 

                   

2 2 2 2 2 21
1 2 2 2 216 ( )

2 2 2 2 2 2 3 3 3 3
,

2 2 2 2 3 2 2 3

F G F F G G
c

w a u v u vc u u u u

G G F F F G F F G G

u v u vv v v v u u v u v v

                

                                  

  (6)

where F  and G  are given by the method of Has-
sard, Kazarinoff and Wan (Dang-Vu Huyen, and 
Delcarte C., 2000; Corson N., 2009). 

We can distinguish different cases 
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Table 4: Stability of the fixed points according to Hopf bifurcation 

  01c   01c   

( ) 0aca





 

a ac  stable equilibrium 
and no periodic orbit 

stable equilibrium 
and unstable periodic orbit 

a ac  unstable equilibrium 
and stable periodic orbit 

unstable equilibrium 
and no periodic orbit 

( ) 0aca





 

a ac  unstable equilibrium 
and stable periodic orbit 

unstable equilibrium 
and periodic orbit 

a ac  stable equilibrium 
and no periodic orbit 

stable equilibrium 
and unstable periodic orbit 

Now this theorem is applied to the FitzHugh-
Nagumo model in which I  represents the bifurca-
tion parameter 

3

3
1

( 0.7 0.8 )
13

du u
u v I

dt
dv

u v
dt


    

   

       (7) 

Let ( *, *)u v  a fixed point of the system (7). Let 
*1u u u   and *1v v v  , then 

 

3( *)1( , , ) ( *) ( *)1 1 1 1 13

1
( , , ) * 0.7 0.8( *)1 1 1 1 113

u u
u f u v I u u v v I

v g u v I u u v v

        




     




 

With a development of the functions  f  and g  at 
the neighborhood of  (0,0, )I , the above systems be-
come 





(0,0, ) (0,0, ) ( , , )1 1 1 1 1
1 1

(0,0, ) (0,0, ) ( , , )1 1 1 1 1
1 1

f f
u u I v I F u v I

u v

g g
v u I v I G u v I

u v

  
  

 

  

    




 

where  ( , , )1 1F u v I  and  ( , , )1 1G u v I  are the nonlinear 

terms, then 





2(1 * ) ( , , )1 1 1 1 1

1 4
( , , )1 1 1 1 113 65

u u u v F u v I

v u v G u v I


   


   



  

with   
3 3*21( , , ) 1 * *1 1 13 3

u u
F u v I u u v I       and 

 1 7 4
( , , ) * *.1 1 13 130 65

G u v I u v    

 Now, (0,0, )I  is a fixed point of the system. The Ja-
cobian matrix is given by 

21 * 1
.1 4

13 65

u
A

    
 

 

 

The characteristic polynomial 

(Det A  2I ) 61 1 42 2 2( * ) * .
65 65 65

u u       

Let ( ) ( )P I Tr A  and ( ) ( )Q I Det A . We get 

2 ( ) ( ) 0.P I Q I     

Hence, the Jacobian matrix admits a pair of conju-

gate complex eigenvalues if  
1 2( ) ( )
4

Det A Tr A  and 

the above equation has the following roots 

( ) ( ),1,2 I iw I    

with 1 612( ) *
2 130

I u    and 

1 4 2 2( ) * ( )
65 45

w I u I   . Recall that *u  is the so-

lution of equation (2) which can be written 
3 0u pu q    or 

3

4
p  and 21

3
8

q I  . This equation 

admits only one root, thank to the Cardan formulas 
that is given under the form 

*( ) ( ) ( )u I m I n I  , 
with  

221 3 1 1 213( ) 3
16 2 2 16 8

221 3 1 1 213( ) 3
16 2 2 16 8

m I I I

n I I I


          




          

 

Moreover, the value cI of I , for which the real part 

of these eigenvalues is null, is given by the equa-
tions ( ) 0P Ic   and ( ) 0Q Ic  , then 

61 612*( ) 0 *( ) .
65 65

u I u Ic c     
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First, the value 61
*( )

65
u Ic   is considered. Thank 

to the equation (2), it is easy to obtain 

7 439 61
.

8 780 65
Ic   

Moreover,  

( ) ( )
( ) * ( ) ( ) ( )

1 1 3 63 9 1
*( ) ( )

2/33 2 16 2 2( ) 1 21
3

16 8

1 3 63 9 1
( )

2/3 2 16 2 2( ) 1 21
3

16 8

0.8788 0.

dm I dn I
I u I I Ic cc cI dI dI

u I Ic c
m Ic

Ic

Ic
n Ic

Ic

       

  
  
  

    
           

 
 
 

    
          

 

 

Thus, ( ) 0, ( ) 0I w Ic c   and ( )
( ) 0

I
IcI





, then Ic  

is a bifurcation Hopf value of the parameter  I . 

In the following, the direction and the stability of 
Hopf bifurcation are investigated. To do this, let’s 

determine an eigenvector 1v  associated with the ei-

genvalue  1 , obtained by resolving the system 

( 1A  2I )
2(1 * ) 00

0 1 4
0013 65

u iw u vu

v u iw v

     
          

 

 

where ( )0w w Ic . A solution of this system is an ei-

genvector associated with 1  given by 

1
.1 21 * 0

V
u iw

 
    

 

The base change matrix is given by 

 
1 0

Re( ) Im( ) .1 1 21 * 0
P V V

u w

 
    

 

Then  

0011 .2* 1 10

w
P

w u

      
 

Now let the variable change 

1 2 2 11 .
1 2 2 1

u u u u
P P

v v v v

                
       

 

Hence 




( , , )2 1 2 2 21 1 1 .

2 ( , , )2 2
2 1

u u u F u v I
P P AP P

v G u v I
v v

   
                         

   

 

 
 

Let  
( ) ( )1'( ) .
( ) ( )

I w I
A I P AP

w I I



   

 
 Then, for I Ic , 

it implies that 

( ) ( , , )0 ( ) 2 2 2 2'( )
( ) 0

( ) ( , , )2 2 2 2

u w I v F u v Iw I ccA Ic w Ic
v w I u G u v Ic


  

  
  

 




 

with 




( , , ) ( , , )2 2 2 21 .
( , , )2 2 ( , , )2 2

F u v I F u v Ic cP
G u v Ic G u v Ic

           
 

Then  

1 13 2 3( , , ) ( 1) * * *2 2 2 23 3
2* 1 1 * 7 4

( , , ) *2 2 13 130 650 0

F u v I u u u u v I Mc c

u u
G u v I M vc w w

       

              

 

Let 1c  be given by the equation (6). The functions  

F   and G  depend only on 2u , the coefficient 1c  is 

given by 

2 2 31
(0,0, ) (0,0, ) (0,0, ).1 2 2 316 ( )

2 2 2

F G F
c I I Ic c cw Ic u u u

  
 

  
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At the point ( , ) (0,0)2 2u v   and for I Ic , it implies 

that 1 4 2( ) *
65 65

w I uc   , and 

2 2* ( * 1) 557
2 0,1 2 3094 0

u u
c

w


     

 with 61
*

65
u  . The theorem 1 permits to deduce 

the direction and the stability of Hopf bifurcation 

from the signs of  ( )IcI




 and 1c . Following Table 

4, since  ( ) 0IcI

 


 and 01c  , it is easy to see that 

( *, *, )u v Ic  is a supercritical Hopf bifurcation point. 

Moreover, for I Ic , the fixed point is unstable with 

a stable periodic orbit, while for I Ic , the fixed 

point is stable and there is not the periodic orbit (see 
Figure 5). Figure 5(a) shows the phase portrait in the 
plane ( , )u v  of the system (7) with 0.3I , and a fo-

cus stable for a value 0.3I Ic  . Figure 5(b) repre-

sents the time series corresponding to ( , )t u . Figure 

5(c) shows the phase portrait in the plane ( , )u v  of 

the system (7) with 0.4I , and a stable limit cycle 
for a value 0.4I Ic  . Figure 5(d) represents the time 

series corresponding to ( , )t u . 

 

Fig. 5: (a) Phase portrait in the plane ( , )u v  of the system (7) with 0.3I  , shows a focus stable for a 

value 0.3 cI I  . (b) Time series corresponding to ( , )t u . (c) Phase portrait in the plane ( , )u v  of the 

system (7) with 0.4I  , shows a stable limit cycle for a value 0.4 cI I  . (d) Time series correspond-

ing to ( , )t u  

Similarly, let’s repeat the previous process for 
61'*'( )
65

u Ic  . Then the associated value of I can be 

also found as the following 

439 61 7'
780 65 8

Ic   

and 
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( ) ( )' ' ' '( ) * '( ) ( ) ( )

1 1 3 63 9 1' '4 *'( ) ( )
' 2/33 2 16 2 2( ) 1 21 '3

16 8

1 3 63 9 1'( )
' 2/3 2 16 2 2( ) 1 21 '3

16 8

dm I dn I
I u I I Ic cc cI dI dI

u I Ic c
m Ic

Ic

Ic
n Ic

Ic

       

  
  
  

    
           

 
 
 

    
        

0.8788 0.




  

 

Thus, ' '( ) 0, ( ) 0I w Ic c   and ( ) '( ) 0
I

IcI

 


, then 'Ic  

is a Hopf bifurcation value of the parameter I and 

then 557
0.1 309

c    

Now '( ) 0IcI





 and 01c  . Following Table 4, 

'( *, *, )u v Ic  is a supercritical Hopf bifurcation point. 

Moreover, for 'I Ic , the fixed point is unstable with 

a stable periodic orbit, while for 'I Ic , the fixed 

point is stable and there is not the periodic orbit (see 
Figure 6). Figure 6(a) shows the phase portrait in the 
plane ( , )u v  of the system (7) with 1.4I , and a sta-

ble limit cycle for a value '1.4I Ic  . Figure 6(b) rep-

resents the time series corresponding to ( , )t u . Fig-

ure 6(c) shows the phase portrait in the plane ( , )u v  

of the system (7) with 1.5I , and a stable focus for 

a value '1.5I Ic  . Figure 6(d) represents the time se-

ries corresponding to ( , )t u . 

 

Fig. 6: (a) Phase portrait in the plane ( , )u v  of the system (7) with 1.4I  , shows a stable limit cycle 

for a value '1.4 cI I  . (b) Time series corresponding to ( , )t u . (c) Phase portrait in the plane ( , )u v  of 

the system (7) with 1.5I  , shows a stable focus for a value '1.5 cI I  . (d) Time series corresponding 

to ( , )t u  
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In Figure 7, a bifurcation diagram in function of I is simulated in the plane ( , )I u . 

 

Fig. 7: Bifurcation diagram in function of I  in the plane ( , )I u  

Figure 7 shows the adhesion orbits from different 
values of I . This illustrates the supercritical Hopf 
bifurcation at the bifurcation point obtained analyti-
cally, and the appearance of an attractive limit cycle. 
There is a bifurcation or a stability change when I  

acrosses the values  Ic  and 'Ic  (two red stars in Fig-

ure 7). If I  is between these two values,  the system 
turns around a limit cycle asymptotically while if I  

is outside of the interval ';I Ic c
 
  

, then  the system  

converges to a stable fixed point. 

4 CONCLUSION 

This work showed the necessary conditions for the 
parameters of FitzHugh-Nagumo model such that 
there exists only a stable fixed point. It represents 
the resting state in this system. The applied extern 
current is chosen like a bifurcation parameter, and 
when it crosses through the bifurcations values, then 
the equilibrium point loses its stability and becomes 
a limit cycle that implies the existence of a Hopf bi-
furcation. In this paper, the FitzHugh-Nagumo 
model has two bifurcation values where there exists 
the supercritical Hopf bifurcation and they are illus-
trated by a bifurcation diagram. The future work will 
be studied about the chaos properties in the Fitz-
Hugh-Nagumo by adding some perturbation param-
eters. 
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